

Tubes with enhanced surface for use in HVACR applications.

Engineering Thermal Innovation

Introducing our new joint venture, HALCOR-NTT, as a synergy of leadership and technical expertise, we have the vision to revolutionize the HVACR market. Our company, driven by the motto "Engineering Thermal Innovation," combines the strengths of a leading European manufacturer with the innovative capabilities of a recognized technical expert.

This partnership ensures a comprehensive range of engineered products that are designed, tested and produced within Europe, tailored to meet the diverse needs of the European market for technical tubing.

Together, we are committed to delivering superior quality, cutting-edge technology, and unparalleled service, setting new standards in thermal engineering excellence.

EVAPORATOR TUBES

EDX2							
	Sui	itable for full-liquid or fall	ing-film evaporator				
	Plain S	Section	Finned	Section			
	mm	mm	mm	mm			
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height			
1	19.05	1.10	0.635	0.45			
2	19.05	1.20	0.711	0.45			
3	25.40	1.10	0.635	0.45			
4	25.40	1.20	0.711	0.45			

EX2									
	Suitable for full-liquid or falling-film evaporator								
	Plain S	ection	Finned	Section					
	mm	mm	mm	mm					
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height					
1	19.05	1.10	0.635	0.38					
2	19.05	1.20	0.711	0.38					
3	19.05	1.40	0.889	0.35					
4	25.40	1.10	0.635	0.40					
5	25.40	1.20	0.711	0.40					
6	25.40	1.40	0.889	0.35					

EDXL									
	Suitable for full-liquid or falling-film evaporator								
	Plain S	Section	Finned	Section					
	mm	mm	mm	mm					
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height					
1	19.05	1.10	0.635	0.41					
2	19.05	1.20	0.711	0.41					
3	25.40	1.10	0.635	0.41					
4	25.40	1.20	0.711	0.41					

EXA2							
	Sui	table for full-liquid or falli	ing-film evaporator				
	Plain S	ection	Finned	Section			
	mm	mm	mm	mm			
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height			
1	19.05	1.10	0.635	0.35			
2	19.05	1.20	0.711	0.35			

EDX1							
	Sui	itable for full-liquid or fall	ing-film evaporator				
	Plain S	ection	Finned	Section			
	mm	mm	mm	mm			
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height			
1	19.05	1.10	0.635	0.40			
2	19.05	1.20	0.711	0.40			
3	19.05	1.40	0.889	0.35			
4	25.40	1.05	0.635	0.40			
5	25.40	1.15	0.711	0.40			
6	25.40	1.35	0.889	0.35			

- \bigcirc The structure improves the density of boiling nucleus and the speed of liquid refilling, thereby enhancing the boiling heat transfer effect.
- cantly increased compared to smooth tubes.

- \bigcirc Suitable for flooded or falling-film evaporator. \bigcirc The higher efficiency of the tubes allows the designer to reduce overall size of the actual unit, and/or reduce number of tubes resulting reduction on the energy consumption, during operation and less material use.
- \bigcirc The overall heat transfer coefficient is signifi- \bigcirc Tailored solutions can be offered in order to meet customer specific needs.
 - \bigcirc Upon request, different alloys are available to offer.

CONDENSER TUBES

TLC2							
	Plain S	ection		Finned Section			
	mm	mm	mm	mm	mm		
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height	External Ridge Height		
1	19.05	1.05	0.635	0.35	0.80		
2	19.05	1.15	0.711	0.35	0.80		
3	19.05	1.32	0.889	0.35	0.80		
4	25.40	1.05	0.635	0.40	0.80		
5	25.40	1.15	0.711	0.40	0.80		
6	25.40	1.32	0.889	0.35	0.80		

TDCL							
	Plain S	ection		Finned Section			
	mm	mm	mm	mm mm			
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height	External Ridge Height		
1	19.05	1.02	0.635	0.33	0.75		
2	19.05	1.10	0.711	0.33	0.75		
3	25.40	1.05	0.635	0.35	0.75		
4	25.40	1.13	0.711	0.35	0.75		

- into consideration the increased heat transfer area and thinner fin thickness targeting higher efficiency. At the same time, the tube has an inner spiral groove to strengthen the heat transfer of water side.
- \bigcirc The overall heat transfer coefficient is significantly increased compared to smooth tubes.

TXA							
	Plain S	ection	Finned Section				
	mm	mm	mm	mm	mm		
No#	O.D.	Wall Thickness	Wall Thickness	Internal Ridge Height	External Ridge Height		
1	19.05	1.10	0.635	0.35	0.90		
2	19.05	1.20	0.711	0.35	0.90		
3	25.40	1.10	0.635	0.40	0.90		
4	25.40	1.20	0.711	0.40	0.90		

- \bigcirc The external fin shape special design takes \bigcirc The higher efficiency of the tubes allows the designer to reduce overall size of the actual unit, and/or reduce number of tubes resulting reduction on the energy consumption, during operation and less material use.

 - \bigcirc Tailored solutions can be offered in order to meet customer specific needs.
 - \bigcirc Upon request, different alloys are available to offer.

CARBON STEEL FIN TUBES

	Plain S	Section	Finned Section		
	mm	mm	mm	mm	
Туре	O.D.	Wall Thickness	Wall Thickness	Fins Height	Fins Per Inch
	16	1.65	1.25	1.27	19
NDC1	19.05	2.10	1.65	1.27	19
	25.40	2.20	1.65	1.27	19
	16	1.65	1.25	1.27	26
NDC2	19.05	2.10	1.65	1.27	26
	25.40	2.20	1.65	1.27	26

STAINLESS STEEL FIN TUBES

	Plain S	ection		Finned Section	
	mm	mm	mm	mm	
Туре	O.D.	Wall Thickness	Wall Thickness	Fins Height	Fins Per Inch
	16	1.20	0.711	0.70	28
	19.05	1.40	0.711	0.80	28
NDC2	19.05	1.50	0.889	0.80	28
	25.40	1.40	0.711	0.80	28
	25.40	1.50	0.889	0.80	28

PLOWED FIN TUBES

	Plain S	Section		Finned	Section	
	mm	mm	mm	mm	mm	
Туре	O.D.	Wall Thickness	Wall Thickness	Fins Height	O.D. Over Fins	Fins Per Inch
	9.52	0.90	0.60	0.70	10.80	42
NITC	11.10	1.10	0.75	1.70	13.50	23
NIC	15.88	1.20	0.85	1.70	18.60	23
	19.05	1.35	0.95	1.70	22	23

→ The needle-shaped fin design of the fin tube facilitates liquid disturbance and enhances heat transfer.

NOTCHED FIN TUBES

	Plain S	Section		Finned Section		
	mm	mm	mm	mm	mm	
Туре	O.D.	Wall Thickness	O.D. Over Fins	Wall Thickness	Internal Ridge Height	
	15.88	0.70	15.88	0.50	0.15	
NJC	19.05	0.70	19.05	0.50	0.15	
	25.40	0.80	25.40	0.55	0.15	

→ Used in absorption (LiBr) units. This design significantly increases the heat exchange area, while also ensuring excellent fluidity within the channels.

TITANIUM FIN TUBES

	Plain Section		Finned Section		
	mm	mm	mm	mm	
Туре	O.D.	Wall Thickness	Wall Thickness	Fins Height	Fins Per Inch
	19.05	1.25	0.635	0.65	36
TLF2	15.88	1.25	0.635	0.65	36
	25.40	1.25	0.635	0.65	36

 \implies High corrosion resistance material, suitable for poor water quality environment.

THIS IS CERTIFIED BY FSC[®]. THIS CHARACTERISTIC CONFIRMS THAT THE PAPER RAW MATERIALS USED ORIGINATE FROM PROPERLY MANAGED SOURCES. LEARN MORE ON www.fsc.org

Engineering Thermal Innovation

62nd km Athens-Lamia National Road, 320 11 Oinofyta Viotia, Greece T: +30 22620 48111 F: +30 22620 48910 E: Halcor_NTT@halcor.com